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Abstract— Adaptive therapy involves the ability to alter a 

radiotherapy treatment plan based on tumor and anatomical 

changes over a course of therapy. The goal is to better target 

the tumor, reduce dose to healthy tissue and potentially 

improve overall outcomes.  To date, achieving this has 

typically required time-consuming re-planning between 

treatment sessions or monopolizing a linac for an extended 

period while a patient waits on the treatment couch for new 

plans to be generated. Neither of these alternatives has been 

deemed practical or affordable at scale, as very often clinics 

don’t have the resources even if they have the tools.   

Consequently, Varian Medical Systems developed Ethos™ 

therapy, a radiotherapy treatment system that uses artificial 

intelligence (AI) and machine learning to accomplish adaptive 

radiotherapy.  In this paper, we describe the technology that 

underlies the adaptive capabilities of the system. 

Keywords— Adaptive radiotherapy, artificial intelligence, 

machine learning, Ethos, RapidPlan, treatment 
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VII. INTRODUCTION  

A number of challenges exists in the delivery of adaptive 

radiotherapy.  Briefly, the challenges have been: 

• The challenge of performing a full treatment 

planning workflow during a radiotherapy treatment 

session, while the patient is on the treatment couch, 

in treatment position. Treatment planning is a 

complicated task and requires time and significant 

attention and knowledge. The pressure imposed on 

clinicians performing on-couch adaptive therapy 

heightens opportunities for mistakes. 

• The challenge of manually delineating 

influencers—anatomy that influences the shape of 

targets—during the detection of daily anatomy.  

Manual delineation of target structures for daily re-

planning is time-consuming and technically 

challenging.  The process can be particularly 

challenging in the presence of artifacts.   

• The challenge of producing quality plans using 

inverse planning, which is typically performed by 

dedicated treatment planning staff and the manual 

or templated application of optimization cost-

function based objectives or constraints. The skill 

and expertise of the treatment planner can have a 

major impact to the final plan quality. 

Additionally, plan generation in existing 

commercialized systems typically requires 

moderately complex user interactions which 

distract the focus during the on-couch session. 

The Ethos system was designed to address these 

challenges. In this paper, we take a deeper look at the 

technologies within the Ethos system that address these 

challenges. 

VIII. ON-COUCH ADAPTIVE THERAPY WORKFLOW 

The challenges involved in delivering on-couch adaptive 

therapy are addressed, in the Ethos system, through a re-

planning workflow that has been reduced to well-defined 

and predictable clinical decision points in order to lower the 

cognitive load of the clinician. 

Figure 1 (p. 3) illustrates the on-couch adaptive work-

flow implemented in Ethos therapy. It guides the user by 

presenting focused information and asking for a single 

decision at the time. 

• After the kV-CBCT image is acquired, it is 

presented to the clinician for evaluation. The 

clinician can either accept the image or decide to 

acquire a new one (Decision 1). 

• Once the image is accepted, the system detects 

selected normal organ structures directly on the 

kV-CBCT. These structures are referred to as 

“influencer” structures. They are those structures 

that are in the closest proximity to the target(s) and 

have the biggest impact on their shape and 

position. The influencer structures are then 

presented to the clinician, who is asked to review 

and adjust them, and then to confirm that they are 

adequate (Decision 2). 

• Once confirmed, the influencer structures are used 

to guide an algorithm that propagates the target 

structures from the planning, or reference, image to 

the kV-CBCT image. This ensures that features 

and relations between target and anatomy 

structures that were present on the reference image 

are preserved on the kV-CBCT image.  The 

propagated targets and the detected normal 

anatomy structures comprise a new patient 

model—the session model. The user is asked to 
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review and accept the session patient model, with 

focus on the propagated targets (Decision 3). 

• The session patient model is then used by the 

automated treatment planning to produce two 

plans. The scheduled plan is obtained by 

calculating dose from the reference plan on the 

session patient model while the adapted plan is 

obtained by running a new optimization and 

calculating dose using the session patient model. 

The two plans are then shown to the user so the 

appropriate one, scheduled or adapted, can be 

selected for treatment (Decision 4).  

IX. DETECTION OF DAILY ANATOMY 

    To address the challenges involved during detection of 

daily anatomy, an AI-based algorithm that is based on 

convolutional neural networks is used to contour the 

influencers on the session images.  

 

Neural networks 

A neural network is a collection of connected units or nodes 

called “artificial neurons” that behave much like biological 

neurons. They have an input layer, an output layer 

(prediction) and one or more hidden layers. The depth of the 

network depends on the number of hidden layers. Deep 

neural networks are neural networks with multiple hidden 

layers. Deep learning convolutional neural networks 

(CNNs) make the explicit assumption that the inputs are 

images, which allows for the incorporation of certain 

properties into their architecture. CNNs are best for solving 

problems related to image recognition, object detection, and 

other computer vision applications. A typical CNN can be 

viewed as a sequence of layers that transforms an image 

volume into an output volume.  

Varian’s in-house developed and trained deep learning 

model for Ethos therapy utilizes TensorFlow, CUDA and 

cuDNN libraries, and processes images on different 

interconnected resolution levels. Ethos uses full-image deep 

convolutional neural networks with tailored architectures 

that share many similarities with U-Net and DenseNet, 

which are widely used in image segmentation tasks. The 

network itself takes the full 3D iCBCT as an input and 

returns the same size of segmentation as an output.  The 

neural network models used in the influencer segmentation 

process are static and do not continuously learn based on 

user input. This ensures the stability and performance of the 

algorithms over time. 

 

Deep neural network model production 

Neural network training was performed in a supervised 

learning setting using images and ground truth contours 

from several hundred patients. Data was acquired from 

multiple clinics across the Americas, Europe, Australia and 

Asia. Images for the training set were selected to represent a 

realistic spectrum of anatomical variety and typical image 

artifacts. Human anatomy experts created the ground truth 

contours as part of the algorithm development. A single set 

of contours was produced for each training image.  

Training involves three separate datasets:     

1. Training dataset. The training dataset is used to fit 

the model. This process involves utilizing a large 

set of consistently contoured data, which is used to 

perform the actual training of the neural networks.  

Contours in training data sets are randomly peer 

reviewed to ensure adherence to selected 

guidelines. 

2. Validation dataset.  The validation dataset is used 

to provide an unbiased evaluation of a model fit on 

the training dataset while tuning the model with 

hyperparameters.  The validation data set is 

considered a subset of the training data set. 

3. Test dataset. The test dataset is a smaller set of data 

used to provide an evaluation of a final model fit.  

Scans related to a patient that belongs to test set 

cannot be used for network training. Each image 

and contour in test set is reviewed by physicians 

for accuracy. 

A neural network is trained using the classical backward-

error-propagation algorithm. An error is computed at the 

output and distributed throughout the network layers. The 

gradient descent optimization algorithm uses back 

propagation to adjust the weight of neurons by calculating 

the gradient of the cost function. A cost function is a 

measure of how well a neural network performs with 

respect to the given training sample and the expected 

output. The cost function is typically expressed as a 

difference or distance between the predicted value and the 

actual value. It can be estimated by iteratively running the 

model to compare estimated predictions against the ground 

truth. 

 

Hyperparameters in deep learning models 

Hyperparameters are settings that can be tuned to control 

the behavior of a machine learning algorithm. Conceptually, 

they can be considered orthogonal to the learning model 

itself; although they live outside of the models, there is a 

direct relationship between them.  

Examples of hyperparameters:   

• Learning rate — the learning rate quantifies the 

learning progress of a model in a way that can be 

used to optimize its capacity.   

• Number of hidden units — the number of hidden 

units is key to regulating the representation 

capacity of the model.   

• Convolution kernel width — In CNNs, the kernel 

width influences the number of parameters in a 

model which, in turn, influences its capacity. 

Hyperparameters may be tuned using two basic approaches: 

manual or automatic selection. Both approaches are 

technically viable but choosing between them typically 

represents a trade-off.  The decision is related to the high  
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computation costs required for automatic selection  

algorithms. During training of the Ethos therapy deep  

learning models, a hyperparameter optimization is used to 

determine random weight initialization, as well as both the 

 
 
Fig. 1: Ethos therapy on-couch adaptive workflow 
 

 
 
Fig. 2: An example of Varian’s deep convolution neural network architecture. 
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loss function and the layer order. 

 

Post-processing of convolutional neural network outputs 

The segmentation output of the networks is passed through 

a post-processing module that ensures that the output 

matches the selected clinical guidelines. The processing 

operations include the removal of smaller segments or 

dislocated segments, smoothing the final contours as well as 

selecting terminal slices for segmentation. 

 

Model verification and validation  

Each trained neural network model undergoes verification 

tests that compare the obtained classification to the ground 

truth contours on multiple test sets. Several evaluation 

metrics are computed and evaluated during each verification 

test against passing criteria that are established for each of 

the evaluated structures. Models that pass verification tests 

qualify as candidates for validation tests. Because of low 

correlation between similarity metrics and measured 

correction and review times, the verification tests by 

themselves do not qualify models for deployment. Models 

that passed verification are then validated by clinicians in a 

test that better estimates the clinical review effort. Passing 

validation testing ensures that the model meets user needs, 

which qualifies the model for deployment.  Performance of 

deployed models is monitored and compared to validation 

test results enabling algorithm improvement over time.  

 

 

Propagation of targets  

The generation and evaluation of a new treatment plans 

requires the fast generation of new target volume. The new 

target volume needs to be anatomically consistent with the 

initially defined target, that is, it must include the same 

areas of the body as the initial target. Usually, these areas 

are the primary tumor, the primarily affected organ, and 

regions where invasion of lymph nodes has been observed 

or is expected. The initial target volume is informed by 

many sources of clinical information which might include 

imaging, anatomical boundaries, or clinical disease spread 

knowledge, and therefore contains medical reasoning for 

which a human clinician is needed. Detecting it 

automatically on a new image consistently with the initial 

medical reasoning is thus not a straightforward process. 

However, finding a suitable geometric transformation that 

considers the large motion of organs and the partial rigidity 

due to anatomical circumstances at the same time, e.g, 

proximity to bone, is a feasible approach.  

In Ethos therapy previously detected normal organ 

structures that strongly affect targets (so-called influencers) 

are used as a guidance together with partial rigidity 

constraints in a new deformable registration algorithm. This 

is a non-demons algorithm using the discretize-then-

optimize approach. It is formulated as an optimization 

 

 

 
 
Fig. 3: Machine learning model production process 
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 problem – NGF(CT(y),CBCT)+Curv(y)→min – using the 

normalized-gradient fields image similarity measure (NGF), 

which tries to align image edges, and the curvature 

regularizer (Curv), which utilizes the Laplacian to penalize 

large deformations y. Hence, we are solving for a 

deformation y so that CT(y) becomes similar to CBCT. The 

proposed algorithm extends the objective function with a set 

of penalty terms. For each delineated structure 𝑆𝐶𝑇 

available on the planning CT and its corresponding structure 

𝑆𝐶𝐵𝐶𝑇 on the CBCT, we can add a structure guidance term  

∫(𝑆𝐶𝑇 − 𝑆𝐶𝐵𝐶𝑇)2𝑑𝑥 called sum-of-squared-differences.  

Those additional terms are driving the result of the 

deformable image registration towards a maximum overlap 

of the structures. This term enables an improved organ 

match for high magnitude deformations. The resulting 

deformable registration is then used to propagate the target 

from the planning CT to the new image. 

X. ON-COUCH ADAPTIVE TREATMENT PLAN GENERATION: 

INTELLIGENT OPTIMIZATION ENGINE 

The challenges involved in delivering on-couch adaptive 

therapy are addressed, in the Ethos system, through a re-

planning workflow that has been reduced to well-defined 

and predictable clinical decision points in order to lower the 

cognitive load of the clinician. 

Within Ethos therapy, the treatment planning is highly 

automated to allow the user to focus on the clinical aspects 

of the patient’s therapy. In order to automate the plan 

generation, we introduce the Intelligent Optimization 

Engine (IOE), an algorithm that orchestrates the plan 

optimization.   This algorithm aims to perform all the 

actions necessary to generate high-quality dose distributions 

that meet the clinical expectations for the plan and ensure 

that the plan is dosimetrically accurate. It sets up the 

optimization problem for the Photon Optimization 

algorithm and then controls and monitors the optimization 

process. The IOE is used in the Ethos Dose Preview 

workspace, which provides a fast, optimized dose 

distribution to check for potential clinical trade-offs, as well 

as in the automated plan generation, which produces IMRT 

and VMAT plans for a given set of inputs. In both cases, the 

IOE works as follows: 

 

Pre-processing: Translation of goals to objective functions 

The primary input of the IOE is an ordered list of clinical 

goals. The ordered list of clinical goals is created in the 

Ethos treatment management RT Intent module by the 

physician.  IOE performs translation of the ordered list of 

clinical goals into objective functions for the Photon 

Optimizer and creates Quality-functions (Q-functions) to 

monitor and guide the progress of the optimization. Since 

the clinical goals from Ethos treatment management have an 

enforced syntax, the goal to objective function translation is 

straightforward. The Q-functions are described in more 

detail below. 

 

Pre-processing: Overlap handling and objective setting 

Prior to initiating the optimization and plan generation, 

the IOE performs a structure pre-processing step.  In this 

step, the system examines the ordered goal list and the 

contoured organs and targets and assesses possible conflicts 

and overlaps between targets and organs, as well as between 

targets with different dose levels.  

A common overlap situation that requires resolution prior 

to the plan generation occurs when a target overlaps with an 

organ and the user has specified goals for the target and the 

organ that conflict with one another. Due to the overlap 

these goals cannot be physically met. IOE uses the ordered 

clinical goal list to determine how to resolve these overlap 

situations. The IOE then creates a modified optimization 

structure set and adjusts the objective functions to account 

for the overlaps. In Dose Preview, the physician can 

investigate the effects of overlaps and fine-tune the clinical 

goal priority order prior to authorizing the RT Intent and 

starting the automated plan generation. 

Figures 4 and 5 (p. 6) show some overlap examples and 

how they are resolved. 

 

Optimization progress monitoring: Q-functions 

The IOE establishes a set of piecewise continuous 

“quality” functions (Q-functions) for driving the plan 

quality optimization. The Q-functions are derived from a set 

of prototype functions per type of clinical goal. Examples of 

the different types are target lower dose (TLD) goals (goals 

which specify the minimum dose desired for a target), target 

upper dose (TUD) goals (goals which specify the tolerated 

maximum dose to the target), and organ upper dose (OUD) 

goals. The functional form of each prototype is based on the 

known features of a good dose distribution as described in 

the next chapter. The Q-functions are formed from the 

prototype functions by inserting the goal priority and 

relative goal value (dose or volume). This places the 

functions on the Priority-Quality-plane (P, Q) in such a way 

that the Q function goes through the goal point (Pi,Qi), 

where Pi  is the priority for goal i and Qi is mapped to the 

relative goal value (volume or dose) for that goal. 

The Q-functions for TLD goals are increasing for P<Pi. 

This advises the optimizer to improve the dose for the target 

if the plan quality metric is smaller than Pi. For P>Pi the 

TLD Q-functions are constant P=Qi. This signals the 

optimizer that there is no need to improve the achieved 

value for the goal once the goal is met. TUD and OUD Q-

functions start as constant P=Qh for P<Pi-1, where Qh is a 

large Q-value. This ensures that while P is in this range, the 

goal plays no role in the optimization. After the constant 

part the functions have a steep decrease towards the goal 

value Qi. This advises the optimizer to work on these goals. 

Furthermore, for some P>Pi the TUD Q-functions decrease  
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towards the prescribed Q-value and the OUD Q-functions 

towards a Q-value that can be met without compromising                                                         

            

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 (next page) provides an example of the Q functions 

for a set of 3 goals, one for each goal type: target upper, 

target lower, and organ upper. Once Q-functions are 

established, the system starts the optimization and then 

interrogates the achieved values for each goal at specified 

intervals (certain number of iterations) and then uses the  

 

 

 

 

 

higher priority goals. This guides the optimizer to try further 

improvements even if the goal is met.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
associated Q-function to determine an achieved Pa value for 

the goal. The goal of the IOE is to maximize the collection 

of P values in a given optimization. Figure 7 illustrates how 

the Q-functions are utilized to monitor the progress of the 

optimization. 

 

 

 

 

 

 

 
 

 

Fig 4. Conflict from multiple overlapping targets. A) High dose target (PTVhigh) overlapping with lower dose target (PTVlow). B) User specifies a goal 
for maximum dose in PTVlow which is in direct conflict with the minimum dose goal for PTVhigh. The system crops the PTVlow from PTVhigh (with 

some margin for dosimetric fall-off) and then applies a maximum dose objective which follows the needed form for the PO algorithm (created from the 

input maximum dose goal) to the remainder of PTVlow. 

 

 
 

 
Fig 5. Conflict from organ (blue) overlapping with target (red). A) Target in shaded red with overlapping organ in shaded blue. B) Organ goal has 

higher priority than target goal: the target is cropped with the organ including a margin for dosimetric falloff. C)  Target goal exists with higher 

priority than organ goal: the oar is cropped with the target, again with a margin for dosimetric falloff. The dashed lines show the unmodified structure 

outline. 
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Fig 6. Intelligent Optimization Engine Q-functions (goal functions). In this example, the vertical axis in each panel is a quality measure for a goal. A 

goal meets its quality measure if the achieved value is the same or better than the goal value. The horizontal axis is a depiction of the relative priority 

of the set of goals. A) Red line is a TLD Q-function with priority 1, orange line is a TUD Q-function with priority 2, green line is an OUD Q-function 
with priority 3. In each, the circled point is the goal value in relative dose or volume.  Note that organ goal functions have a decreasing component for 

P>Pi. This guides further improvement after the goal is met. B) Q-functions for a different set of goals: user has decided that the OUD goal has highest 

priority, and TUD has lowest priority. 

 

 
 

 

Fig 7. IOE, monitoring the optimization progress. Example with three goals. Optimization is started with fixed weightings for all objective functions. 

A) After x iterations, the dose distribution is interrogated, and P values obtained. IOE elevates cost for objective function with lowest P (TLD 
goal=0.82; red line). B) After another x iterations, dose distribution is interrogated again. TLD goal is met and P is at a maximum value (6.0 here). IOE 

elevates the cost for the goal with P=1.68 (TUD). C) After another x iterations, dose distribution is interrogated a third time. Target upper goal is now 

met with P evaluated to 4.25. IOE elevates cost for the goal that had P=2.68 (OUD). Optimization continues until the collection of P is maximal and 

cannot further be improved. 
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The shape and location of the goal functions along the 

priority axis cause the optimization to progress similarly to 

how a human planner would work. Unmet goals with higher 

priority receive attention before unmet goals of lower 

priority.  When goals are met, additional effort is expended 

to reduce the dose to organs where possible. The example in 

Figure 6 could be performed with the goal functions from 

panel B of Figure 7. In that case, the highest priority goal is 

the organ upper and would be achieved first, prior to 

focusing attention to the lower priority goals. Since this is 

goal-based optimization, the system does not stop when one 

goal is unmet; instead, the IOE detects the condition and re-

baselines the goal function to higher (for organ or target 

upper goals) or lower (target lower) values.   

 

Extra controls for clinical plan quality 

Some aspects of clinical plan quality are not easily 

conveyed through clinical goals. To remedy this, the IOE 

adds some extra goals, structures, and optimization 

objectives for the PO algorithm.  

Normal tissue dose is controlled using several methods. 

Firstly, hidden normal tissue optimization structures are 

created by the IOE. A ring-structure 1 cm away and 0.5 cm 

in thickness is created around every target. Another large 

normal tissue structure is created encompassing everything 

outward from the ring structures. All the normal tissue 

structures are given dose controlling clinical goals which 

the IOE will treat similarly as other clinical goals but with 

lower priority. The normal tissue dose is also controlled via 

Photon optimizer automatic normal tissue objective and a 

maximum dose objective that is assigned for the whole 

body. 

The clinical quality for the dose coverage of PTV is also 

controlled. When the PTV is given a clinical goal that is not 

a minimum dose goal, the IOE adds a maximum of three 

helper objectives for the PTV. The objectives are placed 

along a parabola that has its maximum at V=100% and goes 

through the goal point (Di, Vi). Thus, the objectives have 

volume values between the goal volume Vi and full volume 

and the dose values are smaller than the goal dose Di. The 

addition of the objectives gives a tighter shape for the 

shoulder of the PTV’s DVH curve. For example, a goal of 

D95%>50Gy will have extra objectives placed between 

95% and 100% volume. The helper objectives are not added 

in cases where they would conflict with higher priority 

goals supplied by the user.  

An extra control for clinical plan quality is also added for 

the plan complexity. This aspect is controlled and monitored 

during the optimization using an Photon optimizer 

smoothing objective. If the user has selected to use a 

RapidPlanTM model, the DVH estimates from the model 

are used as an additional guidance for the algorithm as 

described in a separate section below. 

XI. RAPIDPLAN KNOWLEDGE-BASED PLANNING 

Within the context of the aforementioned Intelligent 

Optimization Engine, the establishment of clinical goals 

compatible with the patient’s unique geometry is not always 

intuitive. The proximity of a critical normal organ to the 

intended target may limit the potential for sparing and a 

compromise may be needed. 

RapidPlan® knowledge-based planning, a machine 

learning tool that can potentially enhance the quality and 

efficiency of treatment planning based on historical patient 

data, addresses these challenges. The user builds models 

with RapidPlan by taking inputs from dosimetric and 

geometric parameters of the plans included in a training set.  

As an output, the models can generate predictions of the 

dose volume histograms for modeled structures and 

generate the optimization objectives needed to drive DVHs 

to those predictions. This permits the clinician to evaluate 

the predicted normal organ sparing prior to generation of a 

deliverable treatment plan, as well as incorporate the 

prediction to the plan quality evaluation.   

 

Organ Partitioning 

Organ volume partitioning is performed on each structure 

of every plan included in the training set and in application 

of a specific model to a new clinical case. The beam 

geometry is used to create the partitions, as the beam’s eye 

view (BEV) from each field or control point is necessary to 

determine if a structure will receive any radiation dose at 

all. By combining the information obtained during 

partitioning, the software is able to predict dose volume 

histograms (DVH) for modeled structures. As shown in 

Figure 8, the organ partitions are:    

• Out-of-field region – the region of the structure that 

receives only scattered radiation dose  

• Leaf transmission region – the region where the 

structure is always covered by leaves from a 

multileaf collimator (MLC) 

• Overlap of the organ with the target (or union of all 

targets) 

• The in-field region – the region that that is distal or 

proximal to the target in the BEV and is not one 

the aforementioned regions. It represents the 

greatest contribution of dose to the modeled 

structure. 

 

Partition modeling 

Every case in the training set undergoes partitioning and 

RapidPlan extracts the average and standard deviations of 

the dose in the out-of-field partitions, leaf transmission 

partitions, and target overlap partitions.  The in-field 

partition receives different treatment. This partition uses a 

supervised regression model of machine learning to infer 

characteristics that permit prediction of dose for this region. 

Combined with the result of the other three partitions, the 

entire DVH can be predicted. 

 



MEDICAL PHYSICS INTERNATIONAL Journal, vol.8, No.2, 2020 

 

 

 

85 

Geometry Expected Dose 

In order to extract information which connects the 

geometry of the patient to the observed radiation dose, we 

utilize the concept of Geometry Expected Dose (GED). The 

GED is a score for each voxel within the treatment volume 

based solely on basic photon beam characteristics and the 

relationship of the structure with the radiation fields. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GED includes understanding the following properties: 

• Field geometry  

• Photon behavior 

• Target geometry and dose levels 

• Heuristics about which kind of beam arrangements 

lead to sparing of normal tissue 

The GED can be calculated very quickly and only 

requires the field geometry, planning CT, and the structure 

geometry on the planning CT. 

 

Supervised Regression 

Once the GED for a given case is calculated, we can 

tabulate the GED volume histogram for the in-field 

partitions of modeled structures. These are considered to be 

highly correlated to the dose volume histograms for the 

same structures. This assumption is based on the observable 

fact that the geometry relation (proximity) to a target highly 

influences how well a structure can be spared in a given 

treatment plan. Over a population of similar treatment plans, 

or treatment plans from a similar anatomical site, the DVH 

of the in-field partition and the GED volume histogram will 

be highly correlated.  

To extract the correlations, RapidPlan uses principle 

component analysis applied to both the collection of in-field 

DVH and GED volume histograms in a training data set. 

The coefficient obtained from the principle components can 

be arranged and analyzed through regression models to 

extract the correlation from a given GED volume histogram 

to an observed dose volume histogram.  For any case for 

which a DVH prediction is desired, the dose volume 

histogram for the in-field partition is predicted from this 

regression obtained from the training data set. 

 

RapidPlan compatibility with Ethos therapy 

Any RapidPlan DVH estimation model can be imported 

and applied to a RT Intent within Ethos treatment 

management. If attached to an RT Intent, the DVH 

estimates for modeled structures are shown in the Ethos 

Dose Preview and in the Plan Review work areas. 

Additionally, the lower border of the DVH estimation band 

is used to derive a line objective which is applied during the 

plan generation process for both the initial planning and 

adaptive planning workflows in Ethos treatment planning.  

Because there is not a known priority order for the line 

objective derived from the RapidPlan model, we cannot 

utilize the Intelligent Optimization Engine to effectively 

monitor or modify the strength of this line objective. The 

cost function derived from the line objective is added to the 

overall optimization, but at a level low enough not to 

overwhelm the objectives that the IOE determines, places, 

and monitors from the input goals and priority rankings. As 

such, its primary use in Ethos therapy is as a quality 

monitor. If the Ethos treatment planning Dose Preview or 

candidate plans from automated plan generation cannot 

achieve a result within the DVH predictions, the planner 

may need to add additional goals, change the order of goals, 

change the beam geometry, or determine that the case is not 

suitable for automated planning. 

XII. CONCLUSION  

Varian introduced and received CE mark for the Ethos 

therapy system in September of 2019; first patient 

treatments occurred later that month at Herlev Hospital in 

Denmark. The system received 510(k) clearance from the 

U.S. Food and Drug Administration in February 2020.  

The Ethos therapy system incorporates technology that 

uses artificial intelligence and machine learning to create 

contours and generate adapted plans for physician review 

while a patient is on the treatment couch.  The system offers 

radiation oncologists a set of simple tools that enable them 

to achieve their intention for each patient. The daily 

variation in a patient’s anatomy, captured and visualized by 

iterative kV cone-beam CT (iCBCT) imaging, enables the 

on-couch adaptive workflow.  

Ethos further allows a physician to choose which plan to 

deliver and to complete an adapted treatment within a 

typical 15-minute treatment time slot. 

 

Clinical images at treatment delivery 

Ethos therapy integrates multi-modality diagnostic 

images at the point of treatment on the treatment console. 

This means the daily re-planning sessions can utilize the 

 

 

 
 

Fig 8.  Organ volume partitions used in the machine learning DVH 

models. Each partition contributes to the sum total DVH as shown. 
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same multi-modality images that informed the initial 

planning stage.  At each treatment, Ethos therapy shows: 

• That day’s anatomy with iCBCT images 

• Registered CT, PET, and MR images 

• The expected 3D radiation dose to the target and 

organs at risk for both the un-adapted and adapted 

plans 

 

Decision-making guided by AI 

The goal of Ethos therapy was to design a simple 

adaptive therapy workflow for both the initial planning and 

daily re-planning sessions.  

During initial planning, Ethos therapy automatically 

produces several plan candidates with various beam 

geometries and techniques using prioritized target and organ 

at risk goals from the physician’s intent. The clinician 

chooses the most suitable plan and authorizes it for delivery. 

This step provides confidence that the goals and patient 

geometry are compatible, and that plan automation can be 

performed each day. Each treatment day, once the daily 

anatomy is reviewed and accepted, Ethos therapy will 

prepare a new adapted plan using the beam geometry of the 

initial plan, the initial set of target and organ and risk goals, 

and give the clinician the choice of either the original or 

adapted plan for delivery.     

The process is guided by the technology, as follows: 

• A decision tree guides the entire adaptive therapy 

process 

• Treatment management and treatment planning 

applications are tightly coupled and context-aware 

• Clinician approvals move the process from one step 

to the next 

• Every step of the workflow is optimized for speed 

and engineered for safety 

 

Automated dose accumulation 

Each day, the Ethos therapy system automatically 

reconstructs delivered dose in relation to today’s anatomy. 

This capability: 

• Demonstrates that the patient is receiving the 

intended dose 

• Improves understanding of the treatment progress 

• Helps identify when re-simulation may be required 

• Simplifies off-line adaption 

 

Familiar, efficient QA 

QA for Ethos therapy follows a familiar workflow. 

• The flexible workflow for pre-treatment QA 

accommodates phantom- or calculation-based QA 

methodologies. 

• Initial planning and adaptive planning at the 

console use the same algorithms for consistency. 

• Independent adaptive plan QA can be performed 

on-demand, without impeding treatment workflow. 

 

This article derives from a Varian technical brief on 

Ethos™ therapy artificial intelligence.   

Intended use summary: Varian Medical Systems’ linear 

accelerators are intended to provide stereotactic 

radiosurgery and precision radiotherapy for lesions, tumors, 

and conditions anywhere in the body where radiation 

treatment is indicated.   

Important safety information: Radiation treatments may 

cause side effects that can vary depending on the part of the 

body being treated.  The most frequent ones are typically 

temporary and may include, but are not limited to, irritation 

to the respiratory, digestive, urinary or reproductive 

systems, fatigue, nausea, skin irritation, and hair loss.  In 

some patients, they can be severe.  Treatment sessions may 

vary. 
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