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Abstract— Nowadays, the probability of the intersection (PI) 
of two or more stochastic events or processes is calculated as the 
product of probabilities (PPs). The Bayes’ theorem (BT) is 
widely used in the ionizing radiation field. We will show the PI 
is not only obtained as the PPs; but the minimum of their 
probabilities; and demonstrate that terms P(B|A) and P(A|B) in 
the BT are not new probabilistic metrics, but the own respective 
probabilities of B and A events. Mathematical derivations based 
on strong probabilistic foundations, and with their respective 
illustrations were our methodology. There are demonstrations 
of: 1) The two ways for determining the PI; and 2) Incoherencies 
of the BT. The tumor control probability (TCP) and normal 
tissue non-complication probability (NTCP0) of the radiation 
oncology treatments to patients with more than one target, 
calculated respectively as the product of TCP, and NTCP0 of 
each treatment, are excellent-practical examples in the 
determination of the PI using PPs.  Given previously explained 
conditions of the BT terms; the use of this theorem should be re-
considered. The current determination of the PI using the PPs 
is not valid for stochastic variables belonging to a stochastic 
event or process. 

Keywords— Bayesian statistics; simulation; TCP; NTCP0; 
product of probabilities. 

 

I. INTRODUCTION  

I.1 The derivation of the Bayes' theorem (BT) 

Bayesian statistics (BS) is named after Thomas Bayes in 
1793 formulated a specific case of Bayes' theorem in a 
published paper. “Bayes’ theorem is a way to figure 
out conditional probability. Conditional probability is the 
probability of an event happening, given that it has some 
relationship to one or more other events.” [1].  The BS is 
widely used in the ionizing radiation field as shown in [2-4]. 
The Figure 1 shows procedures described in the derivation of 
the BT. 

In the Figure 1, N is the number of people of a population 
with two stochastic events A and B in These events are 
characterized with their respective probabilities P(A) and 
P(B), and 

 
Figure 1. Graphical representation of the probabilistic procedures used in 
the derivation of the BT of the Eq. (7), and product of probabilities of the 

Eq. (5) and Eq. (6). 
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where NA is the mean number of people (MNP) with a true 

A event; while NA∩B is the MNP with true event A and B, 
and P(B|A) is the probability of B given A.  

 
 =  ∗ ()                                      (3) 
 ∩ =  ∗ (�|)                            (4) 

 
where NB is the MNP with a true B event; while NB∩A is 

the MNP with true both events B and A, where, P(A|B) is the 
probability of A given B.  

Given P(A∩B) is probabilistically defined as (� ∩ ) =
 ∩ / , and using the elements of the Eq. (1) and Eq. (2), 
then 

(� ∩ ) = (�) ∗ (|�)                  (5) 
The P(B∩A)= P(A∩B), and derived using a similar way 

is  
   

( ∩ �) = () ∗ P(A|B)                   (6) 
.  
Combining the Eq. (5) and Eq. (6), the BT is obtained as 

the following equation.  
 

P(A|B) = B A ∗ ( )
( )

                            (7) 
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I.2 The product of probabilities (PPs) rule   

“This rule states that the probability of simultaneous 
occurrence of two or more independent events (let’s call A 
and B) is the product of the probabilities of occurrence of 
each of these events individually” [6], and mathematically 
expressed as  

(� ∩ ) = (�) ∗ ()                           (8) 

( ∩ �) = () ∗ P(A)                            (9) 

In the radiation oncology therapy, the formulation of the 
normal tissue complication probability (NTCP) for multiple 
organs at risk (tNTCP) in [7] used the PPs as  

 ὸὝ = 1 −  ∏ (1 − Ὕ )                (10) 

where NTCPi is the NTCP for ith organ at risk.  
 
Using the PPs and probabilistic definition, the 

uncomplicated TCP (UTCP), nowadays, the most acceptable 
UTCP formulation is the following:  

 
ὟὝ = (Ὕ ∩ Ὕ0) = Ὕ ∗ Ὕ0      (11) 

TCP is calculated as the ratio number of patients with a 
tumor control (TC) and total of a homogenous patient 
population treated with a specified radiation treatment; and 
NTCP0 as ratio number of patients without normal tissue 
complication (NTC0) and total of a homogenous patient 
population treated with a specified radiation treatment. 

 

II. RESULT AND DISCUSSION 

II.1 The Bayes’ theorem  

Taking into account the Eq. (5) and Eq. (8), as well as Eq. 
(6) and Eq. (9), then 

(�) ∗ (|�) = (�) ∗ ()                         (12) 

() ∗ P(A|B) = P(B) ∗ P(A)                          (13) 

The two previous equations show that actually P(B|A) is 
P(B), and P(A|B) is P(A). 

 

II. 2 Product of probabilities (PPs)  

The radiation oncology treatment is a stochastic process 
(SP) that involves the tumor control (TC), normal tissue non-
complication (NTC0) and normal tissue complications, 
which are independent stochastic variables (SVs), and 
associated respectively to probabilistic metrics TCP, NTCP0 
and NTCPi (i=1..nc, nc: Number of complications). NTCP0 

has been recently introduced in the radiotherapy, as described 
in [8-10].  

When the radiation treatment is given to patients with 
more than one target, these are treated with more than one 
treatment. Each separated or successive treatment has its own 
SVs. For these reasons, TCP and NTCP0 for multiple targets 
are calculated as 

Ὕ = ∏ Ὕ             (14) 

Ὕ0 = ∏ Ὕ0                 (15) 

where TCPi and NTCP0i are respectively TCP and NTCP0 
of the treatment for the ith target. The previous equations can 
be obtained using the same procedure of the Eq. (5). The Eq. 
(14) has been previous developed already in [7] by other 
researchers.  

  The normal tissue complications associated to NTCPi or 
their probabilistic complements (1-NTCPi) are SVs and 
simultaneously generated after a radiation treatment; i.e., 
these processes are not successive, for this reason the PPs of 
the previous Eq. (10) is incoherent. 

In [8] and [10] we have developed a new formulation of 
the NTCP for multiple organs at risks or End-points, which 
we have called as the total NTCP (TNTCP=1-NTCP0), and 
expressed as    

ὝὝ = ∑ Ὕ               (16) 

where i=1..nc, nc: Number of complications 

  

II. 2 The new P(A∩B) formulation  

 
Figure 2. Graphical representation of the incorrect procedures used in the 

P(A∩B) and P(B∩A) formulations using the Eq. (17) and Eq. (18). 
Although these equations are probabilistically well-formulated; the dash 

arrows represent there are not any stochastic process associated. 

 

As shown in the Figure 2 with a dash arow, although the 
following expressions 

 ∩ =  ∗ ()                       (17) 

 ∩ =  ∗ (�)              (18) 
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are probabilistically well-formulated; these should be used 
only for successive SPs, like successive radiation treatments 
to patients with two targets; and it is incorrect its use when 
are not associated to SPs. A statistic justification should exist 
for determining mean values using PPs.  

As whatever probabilistic metric, for obtaining P(A∩B) 
using computational simulations, one should generate one 
random number (RN) in each simulation; where RN <= 
P(A∩B) is the condition of success.  If a SP has two SVs A 
and B; given this SP inherently involves a specific P(A) and 
P(B); in the simulations the generated RN should be 
compared with P(A) and P(B), in particular with 
min(P(A),P(B)), which expresses the condition of success for 
P(A∩B).  

The Figure 3 illustrates the procedure used in the 
derivation of the Eq. (19).   

 
Figure 3. Representation of the two stochastic and independent events or 

variables A and B with their respective probabilities P(A) and P(B), and our 
proposal of the joint probability or PI P(A∩B) = min(P(A),P(B)). 

(� ∩ ) = άὭὲ((�), ())            (19) 

The probabilistic foundation of the Eq. (19) is represented 
in the Figure 4; and its values are determined for the region 
of intersection, which is the minimum of the probabilities 
P(A) and P(B).   

 
Figure 4. Representation of probabilistic foundation of the PI calculation 

done by the Eq. (19) 

 

BT example of [1]: You might be interested in finding out 
a patient’s probability of having liver disease if they are an 
alcoholic. “Being an alcoholic” is the test (kind of like a 
litmus test) for liver disease. 

• A could mean the event “Patient has liver disease.” Past 
data tells you that 10% of patients entering your clinic 
have liver disease. P(A) = 0.10. 

• B could mean the litmus test that “Patient is an 
alcoholic.” Five percent of the clinic’s patients are 
alcoholics. P(B) = 0.05. 

• You might also know that among those patients 
diagnosed with liver disease, are alcoholics. This is 
your B|A: the probability that a patient is alcoholic, 
given that they have liver disease, is 7%. 

• BT tells you: P(A|B) = (0.07 * 0.1)/0.05 = 0.14. In other 
words, if the patient is an alcoholic, their chances of 
having liver disease is 0.14 (14%). This is a large 
increase from the 10% suggested by past data. But it’s 
still unlikely that any particular patient has liver disease. 

The P(B|A) value used in this example (0.07 or 7%) has 
been assumed.  

For determining the probability of patients diagnosed with 
liver disease, alcoholics too, it should be calculated using the 
Eq. (19), then its value in this particular case is 5%.  

 

II.3 Application of the P(A∩B)=min(P(A),P(B)) in the 
radiation oncology therapy.  

UTCP is calculated as the ratio of the number of patients 
with a TC with NTC0 and the total of a homogenous patient 
population treated with a specified radiation treatment. 
Although UTCP is related to TCP and NTCP0; like each one 
of them, UTCP is a probabilistic metric, and this is not a 
derivation from TCP and NTCP0. Based on the Eq (19) this 
metric is calculated as  

 

ὟὝ = άὭὲ(Ὕ, Ὕ0)          (20) 

 

III) CONCLUSION 

For two stochastic variables A and B of a stochastic 
process, P(A∩B)=min(P(A),P(B)), in other cases  
P(A∩B)=P(A)*P(B).  

As shown in the Eq. (12) and Eq. (13), the P(B|A) and 
P(A|B) used in the derivation of the BT are not new 
probabilistic metrics, but they are own respective P(B) and 
P(A). For this reason, the use of the BT should be re-
considered. 

The UTCP of the radiation oncology treatments with a 
known TCP and NTCP0, and calculated as 
UTCP=min(TCP,NTCP0) is an excellent-practical example 
in the determination of the PI without using the PPs; but the 
minimum of the involved probabilities.   

The results of UTCP=min(TCP,NTCP0) shows that is 
more probable the number of patients without normal tissue 
complications after they being cured with a treatment 
characterized with a TCP; than of results of 
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UTCP=TCP*NTCP0 because of min(TCP,NTCP0) >= 
TCP*NTCP0.  
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