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Abstract: 

 This paper reviews the main developments concerning the application of physics and engineering to medicine 

in Edinburgh from the 1930s to 2010, with brief mention of activity post 2010 for the purposes of continuity.  
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I. INTRODUCTION 

Medical Physics in the UK mainly started with scientific support for the use of ionising radiation for diagnosis 

and therapy in the early years of the 20th century. However, physicists and engineers had been involved in 

medicine in many areas prior to this, including optics, electrophysiology and biomechanics [1, 2]. The Edinburgh 

Medical School was founded in 1726 and from its inception, teaching was influenced by the Newtonian scientific 

approach. Medical students attended lectures on physics in the university Natural Philosophy (Physics) department 

from at least the 1820s, with formal courses on physics principles for medicine (and ‘medical physics’) being 

presented from at least the early 1830s and a physics lecturer specifically appointed into the School of Medicine 

in the 1880s [1]. This was Alfed Daniell who taught to his own 1882 ‘Principles of Physics’ textbook, later (1896) 

publishing a more focussed text, Physics for Students of Medicine. His successor, Dawson Turner, published a 

widely-used text, ‘Manual of Practical Medical Electricity’ in 1893, updated in the 1902 edition to add Röntgen 

Rays and Finsen Light, radiology having begun in Edinburgh in October 1898, so bringing us to the modern 

medical physics era.  

The first half of the 20th century saw the growth of hospital physics and the first medical physics and medical 

engineering departments in the UK being established. The professional body for medical physics, the Hospital 

Physicists Association (HPA), was formed in 1943 with 53 members. One of those was Charles Murison, the first 

full-time hospital physicist employed in a Scottish hospital, who had taken up post at Edinburgh Royal Infirmary 

(ERI) in 1936, working single-handedly to support radiotherapy. 

By 1957 there was established activity in Edinburgh in both medical physics and medical engineering, 

involving both the NHS and University. However, in comparison to other major teaching hospitals, Medical 

Physics had been slow to develop in Edinburgh. Dr (from 1966, Professor) John Greening (1922-2015) was 

appointed in 1957 to set up a joint NHS/University Department of Medical Physics and Medical Engineering 

(DMPME), which he led until his retirement in 1986. This initially combined the existing activities in medical 

instrumentation and radiotherapy physics, with sites at the ERI and the Western General Hospital (WGH). 

Subsequent growth in DMPME involved activities in rehabilitation engineering, nuclear medicine, ultrasound, 

MRI and biomechanics. Outside of DMPME a significant growth to 2010 was the rise of bioengineering, which 

is also discussed.  

Separation of NHS and University activities took place in many departments across the UK in the 1990s and 

2000s, often resulting in jointly funded departments splitting up. DMPME split into an NHS unit and an academic 

unit in 2002 and the latter was itself closed in 2012. By 2010 the original DMPME had undergone gradual 

fragmentation, mainly into clinically led centres. In addition, the early days of the DMPME had seen much clinical 

research undertaken within the NHS, often with little or no external funding. However, by 2010, a significant part 

of research was carried out by University staff with grant funding. At the time of writing, physics and engineering 

activities applied to medicine in Edinburgh are spread across many geographic and organisational areas, with the 

history also fragmented and in danger of being forgotten 
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It is hoped that this article will help keep alive the memory of the internationally leading work in applications 

of physics and engineering to medicine in Edinburgh over the 75 or so years prior to 2010.  

II. RADIOTHERAPY PHYSICS 

Although there would likely have been university physics involvement in the medical applications of X-rays 

and radium from soon after their discovery, Radiotherapy Physics existed formally from 1936 when Charles 

Murison was appointed, as noted above. He had worked for Metropolitan-Vickers on their pioneering work on 

continuously-evacuated 250 kV X-ray tubes and brought that experience to the orthovoltage X-ray treatment 

facility at ERI. There was also a radium unit at the ERI, since 1903 [3], formalised in 1929 as one of a network of 

National Radium Centres. When the DMPME was established, the Radiotherapy Department and its physics 

support had recently moved from the RIE to the new Oncology Department at the WGH. The new radiotherapy 

facility included a 2MV van de Graaff unit and a Metropolitan Vickers 4MV linear accelerator (linac), an 

‘Orthotron’, installed in 1955. This was one of the first five linacs in the world to be used for radiotherapy, all in 

the UK [4]. Murison and others at the WGH were significant contributors to the development of practical methods 

of dosimetry and for radiotherapy planning and treatment using these new linacs [5]. To support the new facility, 

a team of physicists and mechanical engineers was recruited, beginning the expansion of Radiotherapy Physics in 

Edinburgh. Further accelerators were added, with increasing complexity requiring the employment of electronic 

engineers. In the 1980’s a cyclotron was installed, with a separate team of physicists and engineers, providing a 

facility for neutron radiotherapy for several years [6]. By 2008 there were 7 linacs in the Oncology Department 

and approximately 35 physics and engineering staff. The NHS Radiotherapy Physics group were split out from 

DMPME in 1992 and incorporated into Oncology, as the Oncology Physics Department, headed by Tony Redpath, 

although academic links were continued within the university DMPME. Over the period covered by this review, 

significant developments were made in radiotherapy dosimetry (section III) and from the early 1970s in computer 

applications for treatment planning and delivery, led by Redpath and outlined here. 

A. Development of an early computerised 2D planning system 

A Digital Equipment Corporation PDP8 computer system with 16K memory and a floating point processor 

was purchased by the Radiotherapy Department in 1973, aiming to computerise and replace all the manual 

treatment planning processes. Redpath and Vickery wrote software for external beam planning in high-level 

language (Fortran IV) rather than assembler code, allowing it to be understood by physicists working in 

radiotherapy [7]. 

The treatment planning process is well defined, with its objective to achieve a high and uniform dose to the 

target while minimising the dose to organs at risk (OAR). A quadratic programming optimisation algorithm was 

incorporated into the planning software to achieve this [8]. The input data for the algorithm was calculated and its 

execution time was instantaneous, which was far superior to lengthy manual planning. None of this was available 

in other Oncology departments worldwide and by request the software was distributed to around 70 centres. It 

was used as a standard in several countries and was known as 'The Edinburgh Software'. It attracted commercial 

interest and was sold by two companies, Nodecrest (UK) and Varian (USA), running on the latest currently 

available hardware. It was the second most used treatment planning software worldwide for many years. 

Redpath developed software for checking external beam calculations, using independent machine data from 

the initial calculation [9]. It worked for any treatment machine and required a small number of parameters to be 

set for the specific machine. If initial calculation and independent check disagreed by more than 5%, a warning 

was displayed, providing a final quality assurance check. This software was also distributed to centres in the UK.  

Software was also written to reconstruct in 3D and calculate dose distributions for brachytherapy treatments 

using needle and seed implants [10]. Treatment of cervix/uterus using caesium sources with optimisation of the 

source positions was also included and vaginal applicators for this treatment were also designed.  

B. Early computer-controlled beam data collection 

Commissioning a linear accelerator for clinical use involves collection and processing of beam data. Manual 

collection was extremely time consuming. An automated system was developed in 1974 by Redpath, Bottrill and 

Nieman. The water tank’s drive system was modified using stepping motors linked to a planning computer, to 

drive the detector remotely under software control. Detector signals were measured using analogue-to-digital 

converters on the computer [11]. Any X-ray beam size could be measured automatically in minutes at the points 

required to model it in the planning system. Software was developed to smooth and normalise the data and for 

transfer to the planning system database. This enabled beam commissioning measurements for a treatment 

machine to be performed in a day instead of weeks, as well as improving data accuracy and consistency. Redpath 
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then used beam modelling techniques to reduce the extensive measurement of all the beam data on a treatment 

machine, by developing software to generate the data using a small number of measured parameters per machine 

[12].  

 

 

C. Treatment simulation and an early simulator-based CT system 

In 1984, Redpath and Wright interfaced a Grinnell (GMR-275) image-processing computer to the image 

intensifier on a conventional treatment simulator to capture transmitted images and developed a set of image 

processing filters that could be applied to the images to enhance their quality [13]. This was designed to be 

performed in real time by the simulator radiographers. 

CT scanners were then in their infancy and not available for radiotherapy planning. This project also developed 

a CT facility on the simulator [14]. A shaped filter was designed and fitted to the simulator head, to reduce the 

signal intensity in the transmitted image so that the dynamic range of the image intensifier was not exceeded. The 

signal reaching the intensifier was collimated by a 2cm slit. The simulator was rotated through 360º in a minute 

and the transmitted profiles captured every 1º. Software was written for the Grinnell processor to perform the 

image reconstruction for the slice, which took less than a minute. Although the images were not CT scanner 

quality, they were more than adequate for 2D planning, as internal structures could be delineated and the spatial 

accuracy was excellent and superior to previous methods [15]. This technique was taken up by commercial 

companies. 

D. Development of a 3D planning system and dose calculation algorithms  

The move to 3D planning took place with the wider use of CT scanners in radiotherapy. Redpath developed a 

3D planning system, known as Virtsim, on a PC, such that any dose calculation algorithm could be ‘plugged in’. 

Various useful features were incorporated, including: dose-volume histograms for any organ, beam's eye view, 

digital radiographs after the beam exited the patient, beam shaping using multileaf collimation and dose 

calculation in 3D with display on three orthogonal planes [16]. The software was distributed to several 

radiotherapy physics departments in the UK. It was ported to a UNIX workstation and sold by a commercial 

company in the UK (Nodecrest). In parallel, Redpath developed several 3D dose calculation algorithms [17-19]. 

The method used was based on the radiation properties of an X-ray beam and modelled the scatter distribution 

within a heterogeneous medium. Redpath and Thwaites tested the algorithm against measurement in a variety of 

heterogeneous situations, with the final version going through three modification stages with each one increasing 

accuracy. The time needed to calculate a 3D distribution was acceptable for treatment planning. 

E. Intensity Modulated Radiotherapy (IMRT) 

The availability of multileaf collimators on linear accelerators in the early 1990’s allowed beam portals to be 

shaped with increased conformality. This enabled ‘inverse planning’, where the 3D patient dose distribution was 

specified and the shape of the beam portals and the beam intensity at any point within the portals determined. This 

could be treated as a classic optimisation problem. Redpath adapted a simulated annealing technique to find a 

solution where the objective was to obtain a uniform dose to the target volume subject to OAR dose constraints 

[20]. The variables used in the optimisation were the beam intensity at pixels in a map defining each of the beam 

portals, which led to a significant number of variables in the optimisation process, typically around 4000, with the 

algorithm requiring 106 iterations to converge. Because simulated annealing is an iterative technique, convergence 

in an acceptable time can be difficult. However, this took approximately 1 minute to execute and the algorithm 

was incorporated into Virtsim. In addition, Redpath developed a model to determine output factors for conformal 

megavoltage X-ray beams. It worked for dynamic wedging and for both static and dynamic multileaf collimated 

beams [21]. In breast cancer treatment using tangential opposed wedged beams, the shape of the breast means it 

is not possible to achieve a uniform dose distribution throughout the target volume. Redpath and Carruthers used 

Virtsim to calculate intensity modulated beams instead of using wedges. Patient studies demonstrated that 

noticeable improvements in dose uniformity could be achieved [22].  

F. Adaptive radiotherapy for bladder treatment 

Radiotherapy of the bladder presents a difficult problem due to movement and deformity, including of the 

target volume. The development of Virtsim (including IMRT) provided a tool that was not available on 

commercial planning systems, as it allowed the software to be modified to investigate specific problems resulting 

from conformal bladder radiotherapy. This led to collaboration (2003-2008) between Redpath and Muren (Bergen, 
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then Aarhus), arising from the latter’s 2002-03 sabbatical in Edinburgh, with the major projects summarised 

below. 

The clinical target volume (CTV) was outlined on a set of repeat CT scans taken weekly throughout treatment. 

After CT image registration, the superposition of these volumes produced an envelope in which the target volume 

was always present. Margins were applied in all 6 directions to enclose this envelope. In radiotherapy, isotropic 

margins were typically applied to the planning scan. Redpath developed an optimisation algorithm, again using 

simulated annealing, to determine the optimum margins required to minimise the high dose volume outside the 

envelope. The overall values of all 6 margins were determined from analysing 19 patients. Bladder movement and 

margins required were seen to be largest in the superior direction [23]. 

A study on 45 patients investigated if a concomitant IMRT boost dose to the tumour volume on all fractions 

was feasible [24], to give a 20% boost above the prescribed non-involved bladder dose. The optimisation was 

adapted to maintain the uniformity of dose in the non-involved bladder and fulfill the dose constraints on vital 

structures. This was found to be feasible in over 50% of patients and the approach was clinically adopted. 

CT image guided radiotherapy (IGRT) was also used to investigate if shifting the isocentre in all of the 6 

possible directions could reduce the margins required. The optimisation algorithm adjusted the margins, aiming 

to achieve full coverage of the target volume while minimising the high dose volume outside the target volume 

[25]. A marked reduction in the size of the margins from their commonly used isotropic values was shown. The 

target volume was reduced by approximately 30% and a reduction in dose to vital organs was also achieved. 

A major challenge in radiotherapy for bladder cancer is to control and account for bladder motion. In an attempt 

to control bladder volume variation, a series of 20 patients were given fluid intake restrictions on alternative weeks 

of treatment. Weekly CT scanning was performed and the isocentre shifts required to obtain full target coverage 

were determined, using the available optimisation technique. The potential for a large margin reduction was shown 

if the bladder volume is controlled [25]. This work significantly improved the setup for bladder cancer treatment. 

G. A uniform framework for objective assessment and optimisation of radiotherapy images: IQWorks 

A 2010 PhD (Reilly) developed software and both hard and virtual phantoms, to perform quality assurance on 

digital imaging equipment in radiotherapy [26]. Named IQWorks, this expanded as a collaborative national and 

international project to provide medical physicists with automated image analysis software for use with DICOM 

test images in many other imaging areas, including CT, mammography and digital radiography [28]. 

III. DOSIMETRY 

A. Fundamental radiation dosimetry 

John Greening had begun significant research in London in fundamental radiation dosimetry for diagnostic 

radiology, radiotherapy and radiation protection, notably in the theory of cavity chambers. This was continued in 

Edinburgh [29-32]. He had a particular interest in low energy kV beam dosimetry [33] and a 1960s PhD 

programme (Tony Redpath) included calorimetry [34], ferrous sulphate dosimetry [35], ion chambers [36] and 

solid state devices [37]. In 1966, Redpath designed and built a calorimeter to determine microwatt energies of 10-

30 kV X-ray beams, measuring temperature rises ~10-3 ºC/min [34]. It was used to calibrate the other dosimeters 

listed above for clinical dosimetry use. He was seconded to The Christie Hospital, Manchester in the early 1970s 

to develop a similar system to measure the dose output from a 14 MeV therapy neutron generator [38], where 

temperature rises an order of magnitude lower presented even greater measurement challenges.  

Greening supervised Alan Nahum’s 1975 PhD, arising from existing radiation dosimetry work in Edinburgh. 

Nahum developed one of the earliest Monte Carlo (MC) codes for applications in medical physics, modelling 

radiation transport for MV photon and electron dosimetry [39-41]. This pioneering work laid one of the key 

foundations for MC methods to develop into a major tool for radiation research and dosimetry and for its many 

later applications in clinical dosimetry worldwide. 

The above work is folded into Greening’s widely-used textbook on radiation dosimetry [42]. Greening was a 

member of the International Commission on Radiation Units and Measurements (ICRU) for 16 years, developing 

international recommendations for the safe and consistent application of radiation, particularly for clinical 

dosimetry and radiation protection. During his ICRU activity (1966-81) he was involved in Reports 12-39.  

David Thwaites joined DMPME (Radiotherapy Physics) in 1980, direct from PhD and post-doc work on light 

ion stopping powers [43] and continued this analysis for materials of interest for dosimetry and medical and 

biological applications [44, 45]. Outcomes of this work were incorporated directly into ICRU recommendations 

for proton and He ion stopping powers [46] and those of other light ions [47], as source data for particle therapy, 

for other ICRU reports and for many practical and research applications.  

 

MEDICAL PHYSICS INTERNATIONAL Journal – History Edition, No.11, 2025

1600



B. Clinical radiotherapy dosimetry and dose protocols (codes of practice) 

The neutron therapy facility mentioned in section II saw significant neutron dosimetry work by Jerry Williams 

and others, leading to his role in producing the European recommendations for neutron dosimetry [48]. Similarly, 

Edinburgh’s first clinical electron beam linac was installed in 1980, beginning a programme of work on electron 

dosimetry and electron beam treatment applications, aiming to improve accuracy and consistency of clinical 

electron beam use for radiotherapy. This included ion chamber dosimetry, chamber correction factors, phantoms 

and measurement methods [49-52]. This was led by Thwaites and the work fed directly into new UK electron 

dosimetry protocols for clinical use, based on the National Physical Laboratory’s air kerma primary standard [53] 

and then on its calorimeter-based direct-dose-to-water primary standard [54], as well as into national 

recommendations on secondary standard instruments to be used for clinical dosimetry [55]. 

 

C. Consistency of radiotherapy doses nationally and internationally, intercomparison and audit development 

National and international radiotherapy dosimetry protocols (codes of practice) aim to ensure consistency of 

dosimetry between centres and between countries, so that radiotherapy delivery and patient outcomes are 

consistent and experience can be transferred with confidence between different places and within clinical trials. 

However, there is still potential for practice variations in application of protocols. Dose intercomparisons can 

check this. An early international example was a comparison between Edinburgh (John Law), Houston, USA and 

Umea, Sweden in 1970 [56]. The centres exchanged dosemeters (ion chambers, LiF and ferrous sulphate) for 

mutual measurements of stated doses. These agreed typically within 1%, providing confidence at that level. The 

implementation of different dosimetry protocols can also be directly compared in detail in a few centres [57]. 

Remote dose output checking systems, mainly using thermoluminescence dosimeters (TLDs) were begun in the 

late 1960s by the International Atomic Energy Agency (IAEA) to support low-and-middle-income (LMI) country 

radiotherapy facilities, but limited in scope. Also in the late 1970s, the USA began TLD-based dose checks, 

initially to support clinical trials [58, 59]. In the 1980s, systematic national dosimetry intercomparisons began in 

some countries, involving on-site visits and more extensive measurements.  

A UK national megavoltage photon dosimetry intercomparison was organised and run from Edinburgh 

(Thwaites) in the late 1980s [60]. It was planned by an Institute of Physics and Engineering in Medicine (IPEM) 

working group and used ionisation chambers and specifically-designed phantoms to independently measure beam 

calibration reference doses, non-reference dosimetry parameters and multi-field treatment-planned dose 

deliveries, involving on-site visits to all UK radiotherapy centres. This was followed by a similar national electron 

dosimetry intercomparison, with measurements carried out by Nisbet [61]. The results gave significant confidence 

in UK clinical radiotherapy dosimetry, showing ratios of stated doses to independently measured doses very close 

to unity and with small standard deviations for the time. Various minor issues were identified for improvement 

and also one major issue. The latter was a miscalibrated Co-60 radiotherapy treatment unit, arising from an error 

at the time of a source change. This had resulted in patient overdoses at that centre which were not identified until 

the dosimetry intercomparison visit’s measurements. This had significant impact on quality initiatives in 

radiotherapy (next section). The intercomparison methods were applied outside the UK [62].The general 

methodology and regional structure that was developed led to the establishment in the early 1990s of the on-going 

national radiotherapy dosimetry audit network [59], with Edinburgh continuing to lead the Scottish+ group and 

developing a range of other innovative audits [63]. This pioneering work and subsequent expansion have been 

summarised [59, 63]. It led to Thwaites joining IAEA radiotherapy dosimetry audit development groups from the 

early 1990s [64], to support the growth of radiotherapy (and of its complexity) in LMI countries, with significant 

progress taking place during the period of this review and Edinburgh acting as a testing site [65]. Remote audits 

were gradually expanded in scope from beam calibrations in reference conditions for megavoltage photon beams, 

to dose parameters in non-reference conditions and for electron beams. Later (post-2010) this led into audit 

methodology for remote testing of advanced radiotherapy treatment parameters, with the whole system 

summarised in a comprehensive IAEA document [66], and also guidelines for on-site dosimetry methods to 

investigate identified issues and to support whole radiotherapy centre clinical audit [67]. 

 

D. Quality management in radiotherapy, accuracy analysis and in vivo dose verification 

The Co-60 beam miscalibration identified in the megavoltage dosimetry intercomparison led to significant 

attention being given to quality and accuracy in UK radiotherapy and eventually to the introduction of formal 

quality management systems in all departments. These same principles were subsequently incorporated into 

European guidelines on structure and methodologies for radiotherapy quality management and comprehensive 

quality assurance [68, 69]. This also led into an Edinburgh programme of work on analysis of accuracy required 

and achievable in radiotherapy, over the period from 1989-2018. The work (and interim references) in the period 

up to 2010 is summarised in a 2013 analysis [70]. This also included a systematic programme of in vivo 

verification of patient delivered doses, begun in the mid-1990s using diode dosimeters and developing novel 
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methodology and practical approaches [71-73]. The outcomes of this work were also incorporated into European 

guidelines [74].  

E Other: Mammography dose and risk-benefit, image quality, small field radiotherapy dosimetry 

Other significant dosimetry developments in the period of interest include John Law’s work over 30 years or 

so. Law’s work covered mammography system evaluation and quality control and mammographic image quality, 

aiming to minimise dose and improve quality [75], and consistency in mammography doses and the evaluation of 

dose-based risk versus benefit of breast screening [75, 76]. This work initially supported the Edinburgh breast 

screening trial, a pilot study begun in the late 1970s before the UK national breast screening trial commenced in 

the 1980s, and then continued to inform the national system. 

Edinburgh acquired a linac-mounted cone-collimated stereotactic radiosurgery system in the mid-1990s, which 

began a programme for clinical stereotactic radiosurgery treatment of brain lesions and a linked small field 

dosimetry programme. This investigated linac head and phantom scatter factors, small field dosimetry systems 

and methodologies, treatment planning dosimetry and dose delivery verification, much as part of a PhD 

(McKerracher) [77, 80]. Its biggest immediate dosimetry impact, besides preparing the clinical service, was in its 

investigation and evaluation of small field detectors/dosimeters [81, 82].  

IV. MEDICAL INSTRUMENTATION 

The first biomedical engineer in Edinburgh was David Simpson (1920-2006). He undertook a PhD, ‘The 

development of a method of following changes in the radio-opacity of the small bones of the hand’ and then 

worked in the Department of Surgery from 1952. He developed a series of instruments including clinical blood 

pressure monitors [83-85], a skin resistance measurement device [86], fetal pulse rate monitor [87], an AV shunt 

for repeated haemodialysis [88] and a warning device for intravenous therapy [89]. He was an early advocate of 

patient monitoring stations in which several parameters (temperature, heart rate, pressure etc) were displayed 

simultaneously [90-92]. In 1962 following the thalidomide disaster Simpson was asked to set up a prosthetics 

unit, (see section V below).  

Jim Neilson undertook his PhD on ECG analysis graduating in 1962 and worked in this area till his retirement. 

Work involved development of methods to continuously record ECG data from the patient on audio tape and then 

to analyse the ECG data by computer [93-96]. The work was patented [97, 98] and a spin-out company ‘Reynolds 

Medical’ was set up in 1972 to develop 24 Hour ECG recording and analysis [99-101]. The Pathfinder ECG 

analysis was the world’s first commercial automated ECG analysis machine and was released in 1980. The patient 

wore an ambulatory device which recorded their ECG onto audio tape, a standard 90 minute tape operating at a 

much slower speed to allow 24 hours of recording. The audio tape was analysed by the computer to detect 

arrhythmias and other cardiac events. In Edinburgh the device was extensively used in cardiology research [102-

106]. Reynolds Medical continued to operate until 2006 at which point the company was bought by OSI systems 

(Hawthorne, USA). At the time of writing the modern version of the Pathfinder device remains available to buy. 

V. REHABILITATION ENGINEERING 

A. The development of prosthetic limbs following the thalidomide disaster 

In the late 1950s and early 1960s the drug thalidomide was prescribed to pregnant women to help with morning 

sickness and sleep. The drug led to the birth of thousands of babies with severe deformities, including severe 

stunting of arms and legs. Thalidomide was withdrawn in 1961. In Scotland some 100-150 children were affected. 

David Simpson was an established biomedical engineer and was asked to set up a unit to build prosthetics for the 

affected children. The ‘Powered Prosthetics Unit’ was set up in 1963. The unit moved to its long-term home at 

the Princess Margaret Rose Hospital in 1965. 

Artificial limbs were attached to a frame which was contained within a harness or bodice. Movement of the 

prosthesis was achieved pneumatically [107-110]. An important realisation by Simpson was named ‘extended 

physiological proprioception (EPP)’ [111]. The idea was that, from the perspective of the child, the prosthesis 

becomes a part of the child’s arm or leg. The child would seek to control the movement of the prosthesis in the 

same way that a person is able to control the movement of a tennis racket when striking the ball. The child would 

use what movement they had to control the movement of the leg or arm. Over the following decade a series of 

arm and hand prostheses were developed of increasing sophistication by Simpson and his colleagues [112-118].  

The original Powered Prosthetics Unit evolved into the Bioengineering Unit with a wider remit around general 

support for rehabilitation. 
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B. Developments leading to the i-hand and i-limb 

David Gow joined the Bioengineering Unit in 1984 and continued the work on prosthetic arms. The gas power 

source was replaced with an electrical source, movement was controlled by rotation of threaded shafts. While this 

was an improvement over the gas-powered arm, the full arm could only be built in an adult male version, plus the 

hand was relatively unsophisticated [120]. 

In the early 1990s there were limited powered solutions for a prosthetic hand. Gow developed a partial hand in 

which a small motor rotated a spiral shaft (‘worm’) which in turn was connected to a wheel. Movement of the 

wheel resulted in flexion of the digit. A partial hand was produced with separate motor/worm for each digit, 

consisting of 2 digits and a thumb. This was referred to as ‘ProDigits’ and patented [121]. This approach over 

time was scaled up to produce a full hand connected to an arm, called the Edinburgh Modular Arm System 

(EMAS) [120], which was also patented [122]. Much of the development of these devices had been performed 

within an NHS routine service setting, so the engineers involved were doing this work typically within 20% of 

their time, and at times with little institutional support. In 2003 Gow helped set up the company ‘Touch Bionics’ 

to further develop the technology and provide a sales platform. The prosthetic arm was called the ‘i-limb’ and the 

hand called the ‘i-hand’. Touch Bionics was sold to Ossur Hf (Iceland) in 2015. These prostheses have proved 

very successful and have transformed the lives of thousands of patients throughout the world.  

David Simpson and David Gow were internationally leading figures in rehabilitation engineering. An excellent 

review of the career, life and work of both is provided in the book ‘Making Hands’ [123] and in the web resource 

produced by Lothian Health Services [124].  

VI. NUCLEAR MEDICINE 

Nuclear medicine encompasses a range of diagnostic and therapeutic techniques involving radioactive isotopes. 

Impetus for this area increased after WW2 with the availability of a range of isotopes produced by cyclotrons. 

These could be used locally or be packaged for delivery to centres without a local cyclotron. For imaging of 

patients the invention of the gamma camera in the 1950s was a key event. Developments in nuclear medicine were 

undertaken by Peter Tothill (joined DMPME in 1960, was Head of DMPME 1986-1988), Mike Smith (DMPME 

1974-1986) and Jim Hannan (joined DMPME in 1975 and was Head of NHS Medical Physics 2002-2011).  

A. Gastric Emptying 

This technique, introduced in 1966, involves ingestion of radioactive isotope and imaging using a gamma 

camera. In Edinburgh, techniques were developed to monitor the early period of emptying using two different 

markers to simultaneously monitor solid and liquid emptying [124]. These are important issues for the effects of 

gastric surgery [126]. Methodological studies investigated the effect of different variables on emptying including 

posture [127], depth of the isotope from the camera [126] and the use of radioactive inert particles or radioactive 

digestible material [128]. The techniques were widely used in clinical studies [129-132]. 

B. Calcium and bone mineral measurement 

Loss of bone mineral with age, especially following the menopause, can lead to fracture. Bone mineral is lost 

across all bones, but key areas for fracture are the spine, hip, wrist, knee, foot and ankle.  

In Edinburgh methods for measurement of bone mineral content were developed based on irradiation of the 

patient with a radioactive source, with detection of the radiation after passing through the patient. The radiation 

is absorbed by the soft tissues and bone. As the bone mineral content decreases so the absorption by bone will be 

less. Single-photon techniques involving a single radioactive element were developed for measurements in the 

forearm and hand [133-135]. Dual-photon techniques were developed for measurements in the spine [136, 137].  

The use of radioactive sources was superseded in the early 1980s by the use of X-ray sources. DEXA (dual 

energy X-ray absorptiometry) scanners became widely available in hospitals, with machines available from 

several manufacturers including Lunar, Hologic and Norland. Extensive assessment was undertaken, including 

comparing different commercial manufacturers [138-140] and scanning arrangements [141], investigating 

precision and accuracy using phantoms [142], and investigating the effect of body fat and weight [142-146].  

Measurement of whole-body calcium was undertaken using neutron activation analysis. This involved 

irradiation of the patient by neutrons generated from a cyclotron, followed by detection of gamma rays in a whole-

body counter [147]. Stable calcium-48 was turned into unstable calcium-49 by activation, which during decay 

produced a gamma ray. Several clinical studies were undertaken in osteo- and rheumatoid arthritis [148-151].  

A review of the measurement of bone mineral and calcium was published by Tothill in 1989 [152].  

C. Cardiac and pulmonary function 
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Techniques were developed for estimation of ventricular volume and cardiac output [153-156]. These involved 

injection of a radioisotope bolus, recording of gamma camera activity, and fitting of a gamma variate function to 

the activity-time curve. The cardiac output was estimated from the ratio of peak activity divided by the area under 

the curve. Modification of the bolus method was undertaken for measurement of the pulmonary blood volume, 

involving simultaneous monitoring of the activity time curve in the pulmonary artery and left ventricle [157]. 

These methods were used in a series of clinical studies on patients with pulmonary and cardiac disease [158-161].  

VII. ULTRASOUND 

Diagnostic ultrasound imaging involves high frequency (1-20 MHz) ultrasound waves which are transmitted 

and received using a hand-held device applied to the patient’s skin. Ian Donald and colleagues (Glasgow) 

developed the first 2D ultrasound scanner for use in obstetrics [162]. This involved collaboration with Tom 

Brown, an engineer working for Babcocks, a company which worked on industrial flaw detection using 

ultrasound. In Edinburgh the Ultrasound section was led by Norman McDicken (1940-2024) who joined DMPME 

in 1972, becoming Professor and Head of DMPME (1988-2002). Other principal investigators relevant here are 

Steven Pye who joined as a PhD student in 1982 and was Head of the NHS Medical Physics unit (2011-2020), 

Peter Hoskins who joined in 1984 becoming Professor in 2012, Carmel Moran who joined in 1991 becoming 

Professor in 2018, and Vassilis Sboros who joined in 1996 becoming Associate Professor at Heriot Watt 

University in 2024.  

A. Instrument development 

Following his work in Glasgow, Brown worked in Edinburgh from 1970-73 on one of the first 3D ultrasound 

systems using a stereoscopic approach [163]. This was commercialised by Sonicaid as the Multiplane Scanner, 

however this was not commercially successful, and the product was discontinued in 1979. 

Early ultrasound systems relied on manual scanning of a single element transducer in which the image was 

built up over several seconds. McDicken’s group developed a series of ultrasound systems utilising mechanically 

swept transducers for real time imaging. The original rocker system developed in Glasgow involved a single 

element which was pivoted to and fro, giving a maximum frame rate of about 20/second. The follow up system 

developed in Edinburgh had 4 transducers mounted on a wheel enabling a higher frame rate suitable for fetal and 

cardiac imaging [164, 165]. These systems were commercialised by EMI (Emisonic 4262) and Nuclear 

Enterprises. The latter system was used in early studies of gastric emptying and motility [166, 167].  

Other developments included visualisation of biopsy needle tips on the ultrasound image [168, 169], automatic 

gain control for B-mode imaging [170-172] and image processing for speckle reduction [173, 174].  

B. Blood velocity measurement 

Doppler ultrasound concerns the measurement of blood velocities using the Doppler effect. The history of 

Doppler ultrasound relevant to clinical practice centres around the development of real-time spectral Doppler 

(blood-velocity time waveforms), and real-time colour flow (2D images of blood flow) [175]. However, this 

technology is simple; it only measures a single component of blood velocity, that along the ultrasound beam, and 

it concentrates on measurement of maximum velocity. Blood flow may be highly complex, especially in disease 

such as atherosclerosis. Advances in Doppler ultrasound have been concerned with techniques for estimation of 

2 or 3 velocity components and 2 or 3 spatial dimensions, and techniques which improve measurement accuracy. 

For Doppler beams generated using a linear array the Doppler aperture is much larger than for pencil probes. 

It was shown that this leads to systematic overestimation of the maximum velocity [176-178] which occurs as a 

result of geometric spectral broadening [178]. The typical overestimation is 20-30%, but this is angle-dependent 

and machine dependent. It was shown that this creates the potential for mis-categorisation of patients for carotid 

surgery [177]. As the error is dependent on the geometry of the transducer it can be corrected using a string 

phantom to estimate the error as a function of depth in order to create a look up table of correction values. This 

method was used in subsequent work in Edinburgh to measure maximum velocity, and related quantities such as 

wall shear rate and volumetric flow, with high accuracy [178-181].  

Calculation of blood velocity magnitude involves alignment of an angle cursor with the vessel wall, assuming 

that blood travels parallel to the wall. However, blood flow may be complex and velocity vectors may not be 

parallel to the wall. By measurement of 2 components of blood velocity it is possible to estimate both blood flow 

direction and magnitude automatically without the operator having to align a cursor. A dual-beam colour vector 

Doppler method was developed for estimation of the velocity magnitude and direction [182]. This was used to 

provide early evidence for spiral flow in arteries [182]. Vector Doppler systems were developed to provide angle-

independent estimation of blood velocity in a stenosis phantom using spectral Doppler [178] and colour flow 
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[183]. A prototype commercial vector Doppler system was developed with ATL Ultrasound (Seattle, USA) which 

was trialled in phantoms [184] and normal volunteers [185] showing that spectral Doppler data was angle 

independent. 

C. Ultrasound phantom development 

Ultrasound phantoms are essential for the validation of Doppler ultrasound measurements of blood velocity. 

By the late 1980s there were established recipes for tissue mimics for B-mode imaging, but little work on 

phantoms for Doppler ultrasound. McDicken reported a flow phantom in which a gear pump was used to propel 

the blood mimic [186]. This phantom was extended [187] in which the gear pump speed was controlled by a 

computer enabling a wide range of realistic pulsatile flow waveforms to be obtained. Further progress required 

consideration of the acoustic properties of the materials which need to be tissue equivalent. Specifications for the 

components of a flow phantom were defined by IEC 61685 (2001). A blood mimic which met these requirements 

was developed by Ramnarine [188, 189] involving the use of nylon particles to mimic the red cells. This became 

the international standard blood mimic and is commercially available (Shelley Medical Imaging, Canada).  

For a vessel mimic, the best commercially available material was C-flex, a rubber based material (Cole Parmer, 

Illinois, USA). This had the correct acoustic velocity but high attenuation. The problems of distortion of the 

Doppler beam led to the development of flow phantoms with no vessel, so called wall-less phantoms [190]. An 

acoustically matching vessel was created using PVA cryogel [191]. This material is prepared as a gel which 

undergoes hydrogen bonding following freezing and thawing. By adjustment of the number of freeze-thaw cycles 

the acoustic and mechanical properties can be controlled.  

Non-planar carotid phantoms were created using a rapid prototyping technique. Clone phantoms were created. 

One phantom was transparent for use with optical measurement techniques including LDA and PIV [192]. The 

other phantom was manufactured using a wall-less approach for ultrasound [193].  

Reviews by Hoskins discuss the specifications required for flow phantoms [194] and their design and use [195].  

D. Cardiac imaging techniques 

Tissue Doppler imaging (TDI) concerns the visualisation of moving tissues, especially the myocardium, and 

was developed by McDicken in a collaboration with Acuson (Mountain View, USA) [196]. TDI is similar to 

colour flow imaging of blood, but instead the colour image is related to the velocity of moving tissues. 

Adjustments are made to the machine settings to account for the lower velocities of the myocardium and the much 

higher Doppler signal strength compared to blood. In addition to 2D imaging it is possible to acquire TDI data 

along a single line and display this as a function of time [197, 198]. From the 2D TDI velocity data it is possible 

to estimate how much the tissue has stretched or compressed (strain) then from this the strain at each pixel as a 

function of time (strain rate) [198]. The TDI technique was patented by Acuson [199] and is available as standard 

on commercial ultrasound machines.  

Intravascular ultrasound (IVUS) involves acquisition of ultrasound images from within the artery (or heart) 

using an ultrasound transducer mounted on a catheter. For coronary artery imaging the catheter is inserted into 

the femoral artery and pushed upstream to the heart. IVUS imaging is undertaken at frequencies of 20-40MHz for 

which the axial spatial resolution is 100-200m. Radiofrequency (RF) data was acquired from atherosclerotic 

plaque excised from coronary arteries. A number of different features of the RF data were investigated for their 

ability to classify different regions of the plaque according to the histology; eg. ‘lipid’, ‘loose fibrotic tissue’, 

‘dense fibrotic tissue’, ‘calcium’ [200-202]. These methods were incorporated into a commercial IVUS system 

for classification of plaque in-vivo (Volcano Corp, San Diego, USA).  

E. Contrast agents 

Early work in the field focussed on generation of basic science knowledge, engineering solutions (in signal and 

image processing) and assessment of clinical utility in cardiovascular disease and abdominal radiology. In the 

1990s there was an emphasis on in vitro investigation on microbubble physical behaviour with a view to 

understand how to use ultrasound scanners in the diagnosis of cardiovascular disease and the variabilities 

associated with the administration of microbubble contrast agents [203-206]. 

In Edinburgh this work led to experimental physics investigations [207-210] which fed into theoretical 

investigations [211, 212]. The most important achievement was the first evidence that individual microbubbles 

produced scatter that could be detected by ultrasound imaging equipment [213]. This made Edinburgh one of the 

few research centres that investigated the acoustics of single microbubbles, undertaken using a novel acoustic 

setup for the measurement of single microbubble echoes. Using this methodology there followed fundamental 

research including acoustic studies on microbubble resonance [214], on decay/memory effects [215, 216], and on 

bubble behaviour inside capillaries [217] or next to a boundary [218]. These studies were key to understanding 
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microbubble scatter evolution in a real imaging setting, thus leading to signal processing research [219] and 

subsequently the development of in vivo ovine tissue model as a vascular regulation model and in order to generate 

new image analysis on perfusion quantification [221]. This research had a number of impacts, most importantly 

it paved the way to the generation of a new ultrasound field namely super-resolution ultrasound, where single 

microbubbles were tracked using image analysis tools in order to delineate their host vessels, thus creating very 

high resolution ultrasound meta images that are similar to those found in other fields such as super-resolution 

microscopy, astronomy and defence sensing.  

 

VIII. MRI 

MRI was the last of the major medical imaging techniques to gain widespread clinical use. Its origins can be 

traced to the discovery of magnetic resonance by Isidor Rabi (Columbia, USA) in 1938. The first MR image was 

produced in 1973 by Paul Lauterbur (Stony Brook, USA). Peter Mansfield (Nottingham, UK) developed echo-

planar imaging, reducing imaging time to seconds which allowed future developments such as diffusion and 

functional brain MRI. John Mallard (Aberdeen, UK) developed the first MRI whole body scanner from which the 

first whole body image was produced in 1980 [222]. 

In Edinburgh a low field (0.08T) MRI system (M&D Technology, Aberdeen) was installed in 1984, under the 

leadership of radiologist Jonathon Best, with Mike Smith responsible for MRI physics. Developments included 

gated acquisition for cardiac imaging [223], methods for measurement of brain water [224], blood velocity 

imaging [225], and demonstration of pulsatile flow in cerebrospinal fluid [226]. 

Work on brain MRI was led clinically by neuroradiologist Joannna Wardlaw at the Western General Hospital 

[227]. A 2T Elscint MRI unit was funded from 1996, with the Brain Research Imaging Centre for Scotland 

opening in 1998. This system was replaced in the early 2000’s by a 1.5T GE system that remained in operation 

until 2018 performing a wide range of clinical and technical development studies, principally focused on structural 

brain MRI. In the 2020 paper [227] Wardlaw comments that research using these units has changed stroke clinical 

guidelines worldwide, scanned >30,000 patients and led to >£120M research funding. There has been considerable 

physics support for these activities; prior to 2010 this was Ian Marshall (joined DMPME 1980, Head of the 

Academic Medical Physics Unit 2006-2012) and Mark Bastin (joined 1997). There were technical developments 

in MR spectroscopy [227-230], diffusion tensor imaging [231-236] and measurement of brain temperature [237, 

238]. In addition to stroke, these methods were used in a range of clinical studies, including brain tumours [239], 

schizophrenia and bipolar disorder [240], and cognitive ageing [174], including via imaging of the Lothian Birth 

Cohort (LBC) of 1936 and discussion also of work on the 1921 LBC [241]. These techniques have all been further 

developed post 2010 and continue to be used in many clinical studies. 

The use of MRI to measure blood velocity and wall shear rate are noted in section IX below. 

IX. BIOMECHANICS 

The term ‘biomechanics’ in the UK is often interpreted as part of rehabilitation engineering, usually involving 

gait analysis. The term used here is the wider international definition; ‘the study of structure and motion of 

biological systems’. At the patient level this includes aspects of blood flow, the behaviour of arteries and the 

musculoskeletal system, surgical interventions and prostheses. Biomechanics is highly cross disciplinary and most 

work involves interactions between physicists/engineers and clinicians/biologists. Any one project will usually 

use 2-3 technologies, drawn from medical imaging, computational modelling, material science, metrology and 

others.  

A. Heart valve development 

Artificial valves were developed in Edinburgh by Norman McLeod [243-245] working in the Department of 

Physics with the initial version patented in 1970 [246] and an updated version in 1985 [247]. They were of a tilting 

design and tested extensively in a flow phantom and in animals, but were not commercialised for use in humans. 

Testing in a flow rig [248] used milk, with its clotting being used to mimic the build-up of thrombus on the valve 

surface [249-251]. This method was subsequently used to investigate commercial artificial valves [252].  

B. Arterial biomechanics 

A simple model of blood flow is that the velocity direction is parallel to the vessel wall, as noted in section 

VII.B. Flow in arteries may be complex; characterisation of a 3D flow-field requires 7 components; 3 spatial (x, 

y, z), 3 velocity (vx, vy, vz) and time. In the 1990s ultrasound, MRI and computational fluid dynamics (CFD) had 
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sufficiently matured to enable the measurement of complex flow fields in-vivo and to estimate new flow-field 

quantities such as wall shear stress (WSS) which may be useful in clinical diagnosis.  

Early work on colour flow vector Doppler involved sequential collection of data with the beam steered to the 

left followed by the beam steered to the right with vector compounding performed off-line. The initial application 

was the first ultrasound demonstration of spiral flow in the femoral artery of volunteers [182]. A single spiral 

shows as adjacent D-shaped regions of flow towards (in red) and away from the transducer (in blue). These 

techniques were used to demonstrate spiral flow in a cohort of volunteers [253]. Stonebridge went on to develop 

a prosthetic bypass graft which induced spiral flow, manufactured by Vascular Flow Technologies (Dundee).  

Marshall developed MRI techniques for the measurement of the flow-field in carotid phantoms and the first 

MRI measurements of WSS [254-257]. It was shown that there was excellent agreement with the flow-field 

estimated using CFD. However estimated WSS was in error due to the difficulty in estimating the exact location 

of the vessel wall, and in estimating small velocities near the wall. Flow-field data was acquired in normal 

volunteers, from which standard flow-time waveforms were provided for the common, internal and external 

carotid arteries which have been widely used as input data in CFD studies [258].  

For abdominal aortic aneurysm (AAA) rupture carries a 90% mortality rate and surgical repair is considered 

when the maximum diameter is greater than 5.5cm. It is known that diameter is not an accurate predictor of rupture 

and that there is a need for alternative measures. Studies initiated by Hoskins and Whyman investigated the use 

of AAA stiffness in rupture prediction. Stiffness was estimated using a combination of measured blood pressure 

and aneurysm wall motion measured using ultrasound. It was shown that stiff AAA are associated with increase 

in collagen and loss of elastin [259], however it could not be demonstrated that AAA stiffness was predictive of 

rupture [260]. It was thought that the assumed physical model (isolated uniform elastic ring) was too simple. 

The failure of MRI to estimate WSS and of a simple model of AAA behaviour to predict rupture led to the idea 

that a combination of 3D imaging and computational modelling could be used to estimate WSS and tissue stress, 

as potential quantities for use in prediction of plaque and AAA rupture. This field was originally referred to as 

‘image guided modelling’ [261] and later became known as ‘patient specific modelling’ (PSM). In Edinburgh, 

work on the development of protocols for PSM was undertaken in AAA using CT [262] and in carotid arteries 

using 3D ultrasound [263]. Studies on AAA WSS and rupture using PSM were undertaken later [264, 265]. 

C. Musculo-skeletal biomechanics and orthopaedic engineering 

The rise in life expectancy has led to a significant increase in orthopaedic issues, as ageing populations 

experience a natural decline in bone health. Cumulative wear and tear on the musculoskeletal system, combined 

with age-related bone density loss, increases the risk of fractures, joint degeneration, and mobility issues. Court-

Brown and Caesar [266] analysed the changing epidemiology of adult fractures by reviewing around six thousand 

fracture cases treated at the ERI and found that approximately 30% of fractures in men, 66% of fractures in women 

were potentially osteoporotic and predicted a significant rise in these. Their analysis also showed that osteoporotic 

fractures being primarily limited to thoracolumbar spine, proximal femur, proximal humerus and distal radius, 

was no longer correct; they identified 14 different anatomical locations where osteoporotic fractures were found 

to occur. In collaboration with Engineering the age-dependent mechanical response of bone to load was 

determined. A large sample of cadaveric bone specimens were subjected to mechanical tests to evaluate stiffness 

and strength – cortical (or compact) bone in tension [267] and trabecular (or spongy) bone in compression [268]. 

Mechanical tests were followed by examination of porosity, mineralisation and microstructure. The studies 

showed that mechanical properties deteriorated markedly with age.  

Rising life expectancy also increases the need to undertake revision of previously replaced joints. Prosthetic 

components inevitably suffer wear over time, which also results in the degradation of the bone. Skeletal structures, 

which were adequate at the time of primary implantation, deteriorate severely and the bone stock left is 

diminished. A successful technique for hip revision surgery involves use of morselised allograft bone, which is 

compacted into the bone defects and new prosthetic components are then cemented into the grafted bed. If initial 

stability of the new components is ensured, the grafted bone is then slowly re-incorporated and remodelled, 

reconstituting the host skeleton. Ensuring stability requires that the bone graft can sustain shear forces. It was 

common practice to use relatively large bone particles, often called croutons, for grafting. Pioneering work at 

Edinburgh, using basic geotechnical engineering concepts, showed that graded graft particle mix (i.e., mix of 

particles of different sizes) and washing the graft enabled better compaction and strength [269, 270]. Lab 

experiments showed that the graft behaviour was strongly dependent on the compaction blows applied during 

surgery [271]. These also demonstrated that graft was a time dependent material (deformation was not 

instantaneous on load application) and led to the development of the first ever computational model that included 

post-elastic response [272]. Computer simulation was used to evaluate and optimise short term stability of revision 

hip replacements which included bone graft [273, 274]. These studies showed that simulation could replicate 

clinically observed migration (i.e., the movement) of the cup in the acetabulum. One of the most biofidelic 

numerical models of the human pelvis [275], which, for the first time included muscular and ligamentous supports, 
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was developed in Edinburgh (Pankaj’s group) and showed that stresses in the pelvis were far more uniformly 

distributed than previously estimated. After 2010 Edinburgh established itself as a major centre for computational 

biomechanics research in orthopaedics. 

X. BIOENGINEERING 

The term ‘Bioengineering’ was coined in 1954 by Heinz Wolff, and the last 25 years have seen the very 

considerable rise of this area internationally. ‘Bioengineering’ refers to work that integrates engineering and 

biology, whereas ‘biomedical engineering’ refers to work aimed at providing solutions in the medical arena, but 

the 2 terms are often used interchangeably. An embryo Bioengineering Unit was set up in the School of 

Engineering in Edinburgh University in 2006. This became an Institute in 2014 headed by Alistair Elfick. The 

biomechanics work described in section IX was an early example of biomedical engineering in Edinburgh. A few 

of the other themes of work in bioengineering to 2010 are briefly described below. 

A. Raman spectroscopy and related techniques 

A number of optical spectroscopic techniques were developed for applications in live cell imaging and 

characterisation of samples of biological material. Raman spectroscopy involves induction of scattered light which 

contains information specific to the scattering tissues. Modifications to basic Raman spectroscopy are coherent 

anti-Stokes Raman scattering (CARS) and tip enhanced Raman scattering (TERS). In CARS a coherent light 

source is used to increase Raman scattering resulting in improved sensitivity. In TERS a small tip is positioned 

close to the tissue or material of interest. The tip enhances the scattering by a huge factor, and scanning of the tip 

allows 2D images of the surface of a material to be acquired. Developments of both TERS and CARS have been 

undertaken [276-281] with potential applications in many cells types [282, 283]. 

B. Implantable devices 

An implantable device is one which is inside the patient with no wired connection to the outside. Alan Murray 

and colleagues developed a miniature RF transmitter which generated signals which could be picked up outside 

the body [284]. As part of a multi-centre collaboration an electronic pill was developed whose intention was to be 

swallowed and pass through the gastrointestinal system providing real time data on temperature, pH, conductivity, 

and dissolved oxygen [285]. In practice the pill was 1.6cm in diameter and 5.5cm long making swallowing 

difficult. A device for drug delivery was developed for the skin [286] and the eye [287]. The idea was that the 

device is implanted under the skin or eye. The drug is housed in cells whose seal could be broken by remote RF 

activation allowing controlled delivery over an extended period of time. 

XI. POST 2010 

Up to 2010, the vast majority of work involving the application of physics and engineering to medicine arose 

from the original DMPME or its offshoots, continuing Greening’s legacy. Post 2010 is a rather different story. 

Research in Radiotherapy Physics is ongoing, led by Prof. Nailon. Bioengineering has established groups at both 

Edinburgh University and at Heriot Watt University. Large groupings of physicists, engineers and computer 

scientists are based in clinical and preclinical centres supporting work in MRI, PET, CT, ultrasound and retinal 

imaging, all under the umbrella of ‘Edinburgh Imaging’. There are also activities in informatics, artificial 

intelligence, computational medicine and other areas. Thus, whilst no longer under one administrative umbrella, 

applications of physics and engineering in medicine continue strongly into the future in Edinburgh. 
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